自从OpenAI推出ChatGPT大模型开始,通用大模型在全球范围内迎来爆发式增长,多家巨头型企业开始了军备竞赛。作为垂直领域的领军企业,百融云创基于深度学习Transformer框架,结合NLP、智能语音等技术,打造了场景驱动的产业大模型——BR-LLM。百融云创自主搭建了大模型底层框架,通过深度微调能支持百亿级参数的训练。
百融云创大模型主要提供AI开发、智能交互、分析决策的三种服务能力。
在AI开发层面,百融云创大模型展现出强大的代码自动化生成能力。在金融机构中,传统的机器学习模型开发在某种程度而言是一种“手工作坊”的模式,一个场景一个模型,模型之间的经验也不能互相积累和复用。百融云创大模型的自动生成能力将颠覆这一现状,面向不同金融场景的业务诉求,百融云创大模型工程师只需要下达清晰的指令,用文字描述出需求,即能自动生成模型,极大提升机器学习的开发效率和生产模式。开发人员的角色也会随之发生变化,如果说此前开发人员只需要做好技术的工作,有了大模型的加持开发人员还要做好“提问者”的角色。
在智能交互方面,百融云创大模型能提供“真人级”对话效果,对客户的语音识别准确率可达到99%以上,每日进行超过亿级规模的自动交互。
同时,大模型还有“高人一筹”的表现。比如,当银行工作人员向客户推销金融产品时,客户问到一些如近十年某基金收益率这样的专业性问题,工作人员无法及时给出准确的反馈,客户可能就此流失。而大模型跨模态、跨语言的深度语义理解与生成能力,在处理复杂和专业性金融知识上,具有人工所不具备的能力。
一家大型银行动辄几千万的客户,大模型将会为每名客户提供一个7×24小时专属服务,这将为金融客服、智能投顾、产品营销等带来质的飞跃。
在分析决策方面,以判别式AI为代表的小模型已经发挥重要作用,大模型的进场将进一步激发小模型的能量。
数字化转型的快速推进,使得银行内部形成了大量的非结构化数据,这对信息质量要求比较高的判别式AI而言是一片无法触及的领域。当训练的信息量超过一定阈值,大模型就会出现“涌现现象”,即“在较小的模型中不存在,但在较大的模型中存在的能力”。
百融云创大模型能够凭借强大的信息挖掘能力,唤醒金融机构大量沉积的信息,就像是一块巨大的磁石,做关键信息的抽取,为判别式小模型进行赋能。比如在风险监控、信用评估、反欺诈等场景下,大模型能挖掘出小模型无法覆盖到的区域,丰满信息的维度。大模型对于小模型并非是替代或“消灭”,相反,两者将是相互协作的关系,大模型与小模型相互搭配,将大大提升金融决策的精准度和效率。